N-Channel Depletion-Mode Vertical DMOS FET

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Battery operated systems
- Telecom

General Description

The DN2470 is a low threshold depletion-mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FET is ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

$\mathrm{BV}_{\mathrm{DSX}} / \mathrm{BV} \mathrm{DCX}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}(\max)$	$\mathrm{I}_{\mathrm{DSs}}(\mathrm{min})$	Package Options
	TO-252 (D-PAK)		
700 V	42Ω	500 mA	DN2470K4-G

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\mathrm{DSX}}$
Drain-to-gate voltage	$\mathrm{BV}_{\mathrm{DGX}}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature ${ }^{*}$	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Package Option

TO-252 (D-PAK)
(top view)

Thermal Characteristics

Package	I_{D} (continuous) 1	I_{D} (pulsed)	Power Dissipation $@ T_{A}=25^{\circ} \mathrm{C}$	$\boldsymbol{\Theta}_{j c}\left({ }^{\circ} \mathbf{C / W}\right)$	$\boldsymbol{\Theta}_{j a}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\mathrm{I}_{\mathrm{DR}}{ }^{1}$	$\mathrm{I}_{\mathrm{DRM}}$
TO-252	170 mA	500 mA	$2.5 \mathrm{~W}^{2}$	6.25	50^{2}	170 mA	500 mA

Notes:

1. I_{D} (continuous) is limited by max rated T_{j}.
2. Mounted on FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$

Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
BV ${ }_{\text {DSX }}$	Drain-to-source breakdown voltage	700	-	-	V	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {GS(OFF) }}$	Gate-to-source OFF voltage	-1.5	-	-3.5	V	$V_{\text {DS }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\Delta \mathrm{V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{\text {Gs(0FF) }}$ with temperature	-	-	4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$
$\mathrm{l}_{\text {Gss }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\text {GS }}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$
		-	-	1.0	$\mu \mathrm{A}$	$V_{D S}=$ Max rating, $\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}$
$\mathrm{I}_{\text {(OFF) }}$	Drain-to-source leakage current	-	-	1.0	mA	$\begin{aligned} & \mathrm{V}_{\text {DS }}=0.8 \mathrm{Max} \text { Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {Dss }}$	Saturated drain-to-source current	-	500	-	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source ON-state resistance	-	-	42	Ω	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with temperature	-	-	1.1	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance	100	-	-	mmho	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	-	540	pF	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, V_{D S}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	-	60		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	-	25		
$\mathrm{t}_{\text {d(ON) }}$	Turn-ON delay time	-	-	30	ns	$\begin{aligned} & V_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega, \end{aligned}$
t_{r}	Rise time	-	-	45		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-OFF delay time	-	-	45		
t_{f}	Fall time	-	-	60		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	800	-	ns	$\mathrm{V}_{\text {GS }}=-5.0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=200 \mathrm{~mA}$

Notes:
1.All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: 300μ s pulse, 2% duty cycle.)
2.All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895 • www.supertex.com

3-Lead TO-252 D-PAK Package Outline (K4)

Side View

Front View

Rear View

Detail B

Notes:

1. 4 terminal locations are shown, only 3 are functional. Lead number 2 was removed.

Symbol		A	A1	b	b2	c2	D	D1	E	E1	e	H	L	L1	L2	L3	L4	L5	θ	01
Dimension (inches)	MIN	. 086	-	. 025	. 030	. 018	. 235	. 205	. 250	. 170	$\begin{aligned} & .090 \\ & \text { BSC } \end{aligned}$. 370	. 055	$\begin{aligned} & .108 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & .020 \\ & \text { BSC } \end{aligned}$. 035	-	. 045	0°	0°
	NOM	-	-	-	-	-	. 240	-	-	-		-	. 060			-		-		
	MAX	. 094	. 005	. 035	. 045	. 035	. 245	-	. 265	-		. 410	. 070			. 050	. 040	. 060	10°	15°

JEDEC Registration TO-252, Variation AA, Issue E, June 2004.
Drawings not to scale.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]:

 product specifications, refer to the Supertex website: http//www.supertex.com.

